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Chapter 8. On elementary particles’ spectra  
1.0. Introduction  

According to modern representations, all elementary particles are the bound 
states (including the excited states) of a small set of particles. For example, according 
to (Gottfried and Weisskopf, 1984): "The nucleon is simply a basic state of a 
compound spectrum of particles which we have named a baryon spectrum. Similarly 
pion is the lowest state of meson spectrum".  

In present chapter we wont show how in the framework of CWED the spectra of 
the particles as bound and excited states of a small set of some basic particles can be 
formed. 

1.1. The spectra of characteristics of elementary particles 
Generally each elementary particle is defined by a set of various characteristics: 

a mass, a spin, an electric charge, the strong and weak "charges" (i.e. the 
characteristics, which define intensity of strong and weak interaction), the numbers 
of  "affinity" (numbers, owing to which one family of particles differs from another - 
lepton, baryon and other numbers), etc. 

The particles, characterized by identical characteristics, except for any one of 
them, create a spectrum of elementary particles regarding this variable characteristic. 
For example, if as such variable characteristic the mass of particles is accepted, they 
speak about a mass spectrum of elementary particles. 

According to the modern theory there are some limiting conditions of the 
composition of elementary particles, which can be named the conservation laws of 
this characteristic: e.g. the laws of conservation of energy, momentum, angular 
momentum, laws of conservation of an electric charge and charges of other 
interactions, laws of conservation of numbers of "affinity", etc. Some laws 
(principles) also exist, such as a principle of uncertainty of Heisenberg, which restrict 
the transition from one family or a spectrum of particles to another. 

As is known, the existing field theory cannot explain the appearance of 
elementary particle characteristics and cannot deduce the majority of conservation 
laws of these characteristics: they are entered as consequences of experiments. 

If to speak, for example, about mass spectra of particles, the following 
restrictions exist:  

1) according to the energy-momentum conservation law the rest free light 
particles cannot break up to heavier particles, but heavy particles can break up to 
more light particles; 

2) nevertheless, according to a uncertainty principle of Heisenberg, heavy 
particles cannot comprise the light particles as a ready particles (for example, the 
neutron cannot comprise electron as a free particle). 
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The conclusions of the quantum theory are undoubtedly correct and was 
confirmed by experiments, and we should show, that they do not contradict to the 
results of CWED. 

2.0. A hypothesis of formation of spectra of elementary 
particles in CWED 

Within the framework of CWED the electromagnetic twirled waves (EM-
particles) possess the same characteristics, as quantum elementary particles. As we 
saw (see above chapters), the twirled harmonic waves, appearing here, can have 
integer or half spin, can be charged or neutral, etc. The mass of particles within the 
frameworks of CWED is the "stopped" energy of the twirled standing wave. Thus, 
roughly speaking, to a heavy particle by our representation corresponds the twirled 
wave of high frequency, and to light particle - the twirled wave of lower frequency. 
Thus, we should explain the existence of spectra of the particles relatively to all these 
particularities. 

To the simple harmonic waves in Classical Electrodynamics (briefly CED), the 
twirled harmonic waves in CWED correspond. Does exist in CED the opportunity of 
coexistence of several waves as some material formation - an elementary particle, in 
which the characteristics of various waves can be superposed? 

As we know, such opportunity actually exists and it consists in the waves 
superposition, which leads to various forms of coexistence of normal harmonic 
waves and to the appearance of complex non-harmonic waves, which "consist" from 
harmonic waves of various frequencies. 

Analogically to the representations of classical theory of EM waves, whose non-
linear generalization our theory is, we assume that the reason of complication of EM 
particles and of appearance of its spectra is the superposition of simple (harmonic) 
twirled waves, and the reason  of disintegrations of particles  is the disintegration of 
the compound twirled waves. 

The purpose of our paper will be to show that such superposition exists and its 
description completely corresponds to modern theoretical representations and is in 
full accordance with the experimental data. 

Since CWED is the non-linear generalization of classical (linear) 
electrodynamics, it is possible to assume, that the opportunity of the mathematical 
description of the waves spectra creation should exist already in CED. Besides, since 
mathematical description of CWED completely coincides with the mathematical 
description of quantum electrodynamics (QED), we should show that the similar 
forms exist  in QED as well as in CWED.  

2.1. Superposition of «linear» waves 
Remember that under “linear” waves we understand the waves of the linear 

theory. 
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As it is known (Grawford, 1970), the any wave can be represented by 
superposition of more simple waves, named “modes” (terms: “simple harmonic 
oscillation”, “harmonics”, “normal oscillation”, “own oscillation”, “normal mode” or 
simply “mode” are identical). The properties of each mode of any compound system 
are very similar to properties of simple harmonic oscillator. 

In many physical phenomena the system motion represents a superposition of 
two harmonic oscillations, having various angular frequencies 1ω  and  2ω . These 
oscillations can, for example, correspond to two normal modes of the system, having 
two degrees of freedom. It is true as well for the quantum mechanical waves, 
described by quantum wave functions (see a known example of such system is the 
molecule of ammonia (Grawford, 1970)). 

It is possible to illustrate this fact by the example of formation of an energy 
spectrum of electron in hydrogen atom. Really, the electron energy spectrum in an 
electron-proton system is from the general point of view a spectrum of electron 
masses. It is possible to speak about a basic mass (basic energy) in not excited state, 
and about a lot of masses of electron in the excited states, when electron receives 
additional portions of energy (mass). These portions are very small in comparison 
with the basic electron energy (mass), and we cannot consider the excited electrons 
as new particles. But, nevertheless, it does not exclude that these are the phenomenon 
of the same type as new particles’ production. The increase of electron mass occurs 
due to absorption of photons, and the reduction of mass takes place due to emission 
of photons. On the other hand, we actually cannot tell here that the electron contains 
a photon as a ready particle. 

It is easy to show (Grawford, 1970), that the change of electron energy as a 
result of its excitation by a photon corresponds to a hypothesis about the appearance 
of new particles owing to superposition of waves. 

Let's consider the steady-states of the electron in one-dimensional potential well 

with infinitely high walls, whose coordinates are 
2
Lz −=  and 

2
Lz +=  . We will 

also assume that the electron state is defined by superposition of the basic state and 
the first excited state: 
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We can see that the probability expression has a term, which makes harmonic 
oscillations with beats frequency between two Bohr frequencies 1ω  and 2ω . The 
average electron position in space between the wells can be found the expression: 
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where the integration is from one wall  up to the other . 
Obviously, the frequency of radiation is defined by beats frequency. Actually, 

electron is charged and, consequently, it will emit out the electromagnetic radiation 
of the same frequency, with which it oscillates. From the equation (1) we see, that 
average position of a charge oscillates with beats frequency 12 ωω − . Therefore the 
frequency of radiation is equal to beats frequency between two stationary states: 

 12 ωωω −=rad ,  (1.4)      

It is easy to understand that in the framework of CWED, the non-normalized 
quantum wave function is simply the wave field. As a consequence of this fact, the 
square of this wave function (i.e. the possibility density in the framework of QED) is 
the energy density.  

As example of such problem in framework of CWED we will consider the 
calculation of more general case of the interference between waves of various 
frequencies. We will assume, that we have two EM waves 1 and 2, having electric 
fields 1E

r
 and. 2E

r
. The full field in the fixed point P of space will be the 

superposition of 1E
r

 and 2E
r

. Using complex representation of oscillations, we will 
write the expression for superposition of oscillations: 
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The energy flux is proportional to average value of )(2 tE
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 for period Т of the 
"fast" oscillations, appearing with average frequency: 
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As we see, the energy flux varies with relatively slow beats frequency 12 ωω − . 

3.0. Superposition of the twirled electromagnetic waves 
Let’s try to show here that at first the superposition of the twirled 

electromagnetic waves exists and secondly that owing to it, it is possible to receive 
all those results, which are known from the theory of the linear electromagnetic 
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waves. In other words, it is necessary to show, that in this case there are actually 
spectra of particles, each of which represents complication of a basic twirled wave 
due to it superposition with other twirled waves. 

As is known, all the phenomena of superposition of waves and their 
disintegration are described by Fourier theory (Fourier analysis-synthesis theory), in 
which it is shown, that any field can be synthesized from harmonic waves or 
analysed to harmonic waves. We will show that Fourier theory is true in case of the 
twirled waves as well as in case of linear waves. 

3.1. The real and complex form solutions of the wave equation, as 
reflection of an objective reality 

As is known, the wave equation   
(CED form) 
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has the solution, which can be written down in the form of real periodic (in particular, 
trigonometric) functions, as well as in the form of complex (in particular, 
exponential) functions 
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Nowadays it is considered that the representation of the solution of the wave 
equation (or oscillation equation) in complex form is only a formal mathematical 
method, since the final solutions should be real. It was also marked, that the use of 
complex representation is dictated only by the reasons of convenience, since in many 
cases the mathematical operations with exponential functions are easier, than with 
trigonometric. 

 



  
 115 

We have shown (see the chapter 2), that within the framework of CWED the 
exponential solutions have an actual meaning, if we understand them in geometrical 
sense as the description of motion of a wave along a curvilinear (particularly the 
circular) trajectory. The equivalence of both descriptions becomes clear if we 
remember that the circular motion can represent as sum of two linear mutual-
perpendicular oscillations. (We have noted that due to this fact the solutions of the 
wave equations of the quantum theory are not the real but complex wave functions). 

Thus, it is possible to assume, that the existence of the real and complex 
solutions of the wave equation indicates the existence in the nature of two types of 
real objects: the linear and twirled (curvilinear) waves, so that the real functions 
describe the linear waves, and the  complex functions describe the curvilinear 
(twirled) waves 

As is known, the functions, which describ the complex periodic and non-
periodic processes of non-harmonic type can be written by the sum of harmonic 
functions owing to Fourier analysis-synthesis theory. It must be noted that the 
Fourier analysis-synthesis theory allows to work equally both with real and complex 
functions. 

From this the extremely important conclusion follows that all tools of the 
Fourier analysis-synthesis theory in complex representation is the mathematical 
apparatus, which describ the superposition and decomposition of complex twirled 
waves.  

In other words, the complex representation of electromagnetic waves and all 
mathematical apparatus of the Fourier analysis-synthesis theory represent 
mathematical tool of CWED in the same degree as the mathematical apparatus of the 
real functions of Fourier analysis-synthesis theory represents the mathematical tool of 
usual linear Maxwell-Lorentz theory. 

Due to above, the non-linear theory of the twirled waves is the theory in which 
the principle of superposition takes place as well as in the linear theory. 

For this reason the linear Maxwell-Lorenz theory can be also written down in a 
complex form and it looks in such form simple and consistent. Transition from the 
twirled waves to linear (i.e. to one of components of the twirled wave) corresponds to 
transition from complex values to real . 

Let us consider now some peculiarities of the Fourier analysis-synthesis theory 
in the case of superposition of the twirled waves. 

4.0. Elementary particles as wave packets 
As is known, in case of superposition of more than two classical linear harmonic 

waves the wave groups or wave packets are formed, which are limited in space.  
In the quantum mechanics a wave packet (Physics Encyclopedia, V.1, 1960) is 

the concept, which denotes a matter waves’ field, concentrated in the limited area. 
The probability to find a particle is differed from zero only in the area, occupied by a 

 



  
 116 

wave packet. It is possible to consider this wave field as result of superposition of the 
certain set of plane waves. 

The possibility of composition and decomposition of plane waves is a simple 
result of a possibility to analyze any function  in a Fourier series or Fourier integral.  

It is meaningful to apply the concept of a wave packet when the wave numbers 

k
r

 are grouped near to some 0k
r

 with small variation 0, kkk <<∆∆
r

, since in 

this case the wave packet during significant time will move as a whole, with little 

deformation only and with the group speed 
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, corresponding to a 

speed of a particle, described by this wave packet. As is known, the smearing of the 
wave packet does not take place if it can be decomposed on standing waves, i.e. if in 

the decomposition series for each vector k
r

 the vector k
r

−  with the same amplitude 
is also entered. 

Since the superposition of linear waves leads to formation of the linear wave 
packets, it is logical to conclude that superposition of the twirled waves leads to 
formation of the twirled wave packets, i.e. to the compound electromagnetic 
elementary particles. 

It is interesting that the representation of wave function by the Fourier series (in 
case of periodic function) or by the Fourier integral (in case of non-periodic function) 
contains the negative frequencies, which in the linear theory have no place: 
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As it is known (Matveev, 1985), in classical optics it take into consideration that 

describes here the complex unit vector, which rotates around the origin of 
coordinates in a positive direction (by a rule of the right screw). In the same time the 

complex unit vector  rotates in the negative direction. Thus, the appearance of   
the negative frequencies is connected with transition to the rotating complex vectors 
as to the basic functions of  Fourier-transformation.  

tie ω

tie ω−

As a simple example of formation of a linear and non-linear wave packet, we 
will consider a packet formed by the equidistant rectangular frequency spectrum of 
waves of equal amplitudes. The description of superposition of such waves can be 
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made in real (Grawford, 1970)  as well as in a complex form (Matveev, 1985), that 
reflects the existence of the linear and non-linear world of particles. 

We will find the exact expression for a packet )(tψ  formed by superposition of 
N various harmonic components, which have equal amplitude A, an identical initial 
phase (equal to zero) and the frequencies distributed by regular intervals between the 
two frequencies: 1ω  and 2ω . Generally we have: 

(real form) 

tAtnA

tAt
N

n
2

1

1
1

1

cos)cos(

cos)(

ωδωω

ωψ

+++

+=

∑
−

=

 

(complex form) 

∑
−

=

+=
1

0

)()(
N

n

tntieAt δωωψ
 

 

where δω  is the frequency difference of two next components, and  
 and . This formula represents the complex 

wave function in the form of linear superposition of number of strictly harmonic 
components. It appears that this sum can be expressed in the form, which is the 
generalization of the case of two oscillations: 
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is the average frequency of a wave packet.  The amplitude  describes a wave 
packet envelope. It is possible to show (Grawford, 1970) that for a wave packet, 
Heisenberg uncertainty principle are true, what proves their wave origin. Apparently 
that in the case of twirled waves this principle described the particle size limit.  

)(tA

Since the twirled waves already are the space limited objects, it is possible to 
assume, that the electromagnetic particles should be combined not from infinite 
Fourier series, but they should be presented by the sum of the limited number of 
harmonics, i.e. of the twirled waves. 

To describe the synthesis of the complex particles (packets) from more simple 
sub-packets, we will show, that any wave packet can be presented in the form of the 
sum of wave sub-packets. In this case, obviously, superposition (interaction) of 
several big packets can be considered not as superposition (interaction) of their 
separate harmonic components, but as superposition of their sub-packets (particles). 

Let’s consider the splitting of a big packet into two sub-packets. We will present 
a compound wave )(tψ  (see above (4.1)) in the following form: 

 



  
 118 

 , (4.2) 
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Thus, we can represent the wave packet )(tψ  as two sub-packets: 
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It is convenient to enter a shortening for a packet of waves , where sigma 
means the sum of harmonic waves (in particular, a sub-packet). Then, representation 
of a packet in the form of the sum of sub-packets can be written down as: 
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From the above-stated calculations it is visible that decomposition on sub-
packets (particles) is not unambiguous, since each one of the sub-packets can be 
grouped from harmonic waves in various ways. It is possible to assume, that the 
decay of the same particle on different channels can be considered as an opportunity 
of disintegration of packet on various sub-packets.  

Using the above-stated reason it is easy to prove also that superposition 
(interaction) of sub-packets leads to the same consequences as interaction of separate 
harmonic waves, i.e. it leads to beats and to change of the energy level, independent 
from other non-interacting sub-packets.  

Except for curvilinearity in CWED there is one more serious difference from 
linear electrodynamics: in CWED alongside with the full periodic twirled waves 
(bosons), exist also the half-period twirled waves (fermions). This creates a number 
of additional variants of the wave superposition, which are not present in linear 
electrodynamics. Besides, the curvilinearity enters into the physics one more 
characteristic of particles - the currents. 

It is not difficult to understand also that the superposition of the twirled waves in 
comparison with the superposition of linear waves has more variants in a spatial 
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arrangement of waves, and, hence, has more complex mathematical description. 
Actually we can see this in the case of description of hadrons (chapter 7). 

It is easy to see, that the principle of superposition does not provide stability or, 
at least, metastability of compound electromagnetic particles. Thus, we should 
additionally find out the conditions of stability of the twirled waves. 

5.0. The resonance theory of stability of elementary 
particles  

As electromagnetic particles represent the spatial formations, here it is necessary 
to speak about spatial packets, which are formed by superposion of twirled waves of 
a various positions in space (e.g., by superposion of the twirled waves, which lie on 
three mutual-perpendicular coordinate planes).  

As is known (Shpolskii, 1951), at the superposition of harmonic waves are 
formed the Lissajous figures of two various types. At commensurable frequencies of 
waves, the standing waves are formed; at incommensurable frequencies the motion 
of waves is refered to as quasi-periodic. 

In the physics of waves and oscillations exist two sorts of the problems, leading 
to the appearance of the compound waves and oscillations. 

An example of first type of problems is oscillation of the body volume (sphere, 
cylinder, torus, etc.), by which we can represent a particle. Here the suitable 
mechanical example is the oscillation of the sphere, prepared from a hydrophobic 
liquid and placed in water (for example, a sphere from mineral oil in water). In a 
microphysics the object, which possesses similar oscillations, is the drop model of a 
nucleus. 

Problems concerning the same type are also the problems of oscillation of 
vortical rings in a perfect liquid or gas, studied by W. Kelvin (we will name 
conditionally such problems Kelvin's problems). In case of the oscillations of the 
linear vortex considered in work (Kelvin, 1867) he obtains the exact solution. Here 
Kelvin has compared the radiation spectra of the atoms, obtained little time before by 
Bunsen, to possible spectra of oscillation of vortex. Comparison of such type of 
oscillations with observable results is available e.g. in works (Paper collection, 1975) 
and (Kopiev and Chernyshev, 2000). (It is necessary to note, that in his articles W. 
Kelvin used the term “atoms” in sense of Democritus as the smallest indivisible 
constituents, i.e. in modern terminology as elementary particles).  

Certain of the Kelvin significant conclusions from the paper “Atom as Vortex” 
we cite below:  

 “The author called attention to a very important property of the vortex atom. 
The dynamical theory of this subject require that the ultimate constitution of simple 
bodies should have one or more fundamental periods of vibration, as has a stringed 
instrument of one or more strings.  

As the experiments illustrate, the vortex atom has perfectly definite fundamental 
modes of vibration, depending solely on that motion the existence of which 

 



  
 120 

constitutes it. The discovery of these fundamental modes forms an intensely 
interesting problem of pure mathematics. Even for a simple Helmholtz ring, the 
analytical difficulties, which it presents, are of a very formidable character. The 
author had attempted to work it for an infinitely long, straight, cylindrical vortex. For 
this case he was working out solutions corresponding to every possible description of 
infinitesimal vibration.  

One very simple result, which he could now state is the following. Let such a 
vortex be given with its section differing from exact circular figure by an 
infinitesimal harmonic deviation of order i. This form will travel as waves round the 
axis of the cylinder in the same direction as the vortex rotation, with an angular 
velocity equal to (i-1)/i of the angular velocity of this rotation. Hence, as the number 
of crests in a whole circumference is equal to i, for an harmonic deviation of order i 
there are i-1 periods of vibration in the period of revolution of the vortex. For the 
case i=1 there is no vibration, and the solution expresses merely an infinitesimally 
displaced vortex with its circular form unchanged. The case i=2 corresponds to 
elliptic deformation of the circular section; and for it the period of vibration is, 
therefore, simply the period of revolution. These results are, of course, applicable to 
the Helmholtz ring when the diameter of the approximately circular section is small 
in comparison with the diameter of the ring, as it is in the smoke-rings exhibited to 
the Society.  

The lowest fundamental modes of the two forms of transverse vibrations of a 
ring, such as the vibrations that were seen in the experiments, must be much graver 
than the elliptic vibration of the section. It is probable that the vibrations which 
constitute the incandescence of sodium-vapour are analogous to those which the 
smoke-rings had exhibited”.  

As examples of other type of problems are oscillations of sound and 
electromagnetic waves into various types of the closed cavities (boxes), whose 
surface is motionless. Such cavities refer to as closed wave-guides or resonators and 
consequently we will conditionally name this type of problems the closed wave-
guide or resonator problems. In the classical physics a set of researches is devoted to 
such type of problems. Examples of such type of problems are also eigenvalues 
problems of wave functions in the quantum mechanics, which we will consider 
briefly below. 

The above first and second type of problems leads to solutions of type of the 
standing waves, which have the relative time stability. 

Thus, it is possible to assume, that stability (or the relative stability named 
metastability) of electromagnetic particles is connected with a formation of standing 
waves.  

As is known, a mathematical condition of appearance of standing waves is the 
proportionality of wavelength to the size of box (volume), in which the wave 
propagates. Therefore, at the study of a possible solution of these sorts of problems 
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the basic role the limits play, which are imposed on propagation of waves or, in other 
words, the boundary states, imposed on wave functions. 

Below we will show that from this boundary states follow the quantization 
conditions of characteristics of electromagnetic elementary particles. 

5.1. Photon wave equation of classical electrodynamics  
Let,s consider again wave equation for the electric and magnetic field vectors 

(Matveev, 1989): 
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Note that we will obtain the same results whether we use the real forms or the 
complex.   

Putting this solution in (5.1) we find for )(rF r
 the following equation for 

stationary waves: 
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Using these solutions it is also easy to obtain the dispersion law for EM waves: 
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The equation (5.3) refers to as Helmholtz equation and is universal for the 
description of the coordinate dependence of harmonic waves’ characteristics. 

On the basis of this equation, was constructed the Kirchgoff diffraction and 
interference theory of light, which has excellently proved to be true an enormous 
experimental material, which can generalized in the case of  the twirled waves’ 
theory. 

5.2. Wave equation solution for resonator  
To analyse the electromagnetic wave equation solution for resonator we will 

take (Weinstein, 1957) an orthogonal box from metal with a, b and d sites as our 
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model of resonator. We will show that this solution is the standing electromagnetic 
waves. 

According to (5.2) the electric field must satisfy the equations 

  ( ) 0)(22 =+∇ rEk rrr
  

 0=∇E
rr

 

with the boundary state 0=IIE
r

 at the walls of the cavity (because inside the walls 
the electric energy will be rapidly dissipated by currents or polarization, the electric 
field intensity drops rapidly to zero into the walls). However, there could be an 
electric field perpendicular to the walls, because there could be the surface charge on 
the wall. This gives a possible solution: 
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,  (5.3) 

For example, taking any for which , the second and third terms 
above are identically zero, but the first term certainly isn't. 

x 0sin =xkx

Also from 0=Edi
r

υ  using (5.3) we find 

0sinsinsin)( 000 =⋅⋅++=∇ zkykxkkEkEkEE zyxzzyyxx

rr
 if choosing 

k
r

 so that 00 =⋅ Ek
rr

. 

Here the wave equation requires amkx π= , bnk y π= , dlkz π= , 

( )22222
zyx kkkc ++=ω  or 222

zyx kkkc ++=ω , where  are 

positive integers, e.g. (1, 1, 0) or (3, 2, 4), etc. In other words, each possible standing 
electromagnetic wave in the box corresponds to a point in the space, 

labelled by three positive integers.  

),,( nml

),,( zyx kkk

If we want also to obtain the general solution of the magnetic field, we first 
observe that the magnetic field satisfies the same equations and the boundary states 
as the electric field, and so the solution looks exactly the same as the electric solution. 
(An alternative way is to  use ωiEB

rrr
×∇= , which can be easily obtained from 

Maxwell theory). 
Thus, the character of the general solution for EM wave in the cavity is the 

standing electromagnetic wave. 
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It is easy to see, that the stated above description of appearance of a resonance of 
the linear waves, if we make it in the complex form, will correspond to the 
appearance of the resonance of the curvilinear (twirled) waves. 

Show now that the quantum wave equation solutions  for the stationary states 
give the identical  results. 

6.0. The quantum wave equations and their solutions for 
stationary waves 
6.1. De Broglie waves as twirled EM waves 

De Broglie has assumed that material particles alongside with corpuscular 
properties have as well the wave properties so that to the energy and momentum of a 
particle in a corpuscular picture there correspond the wave frequency and wavelength 
in a wave picture. De Broglie has shown that in this case from relativistic 
transformations the parities strictly follow: 

 ωε h=   and  k
p
pp

r
hr

r
hr

==
πλ2

 

and the wave function of a material particle are described by the formulas: 
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In the case of the de Broglie  wave the dispersion law it is easy to find from the 
following energy-momentum conservation law for a particle: 

 222
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Really, replacing the energy and momentum by the wave characteristics, we will 
receive a dispersion correlation for waves of a matter: 
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We will show below that within the framework of CWED this dispersion 
correlation satisfies to the equation of the twirled semi-photon, which produce the 
Schreodinger or Dirac equations. 

6.2. Helmholtz equation for de Broglie waves  
The Helmholtz equation (5.2) describes the waves of various nature in 

homogeneous mediums and in vacuum with constant frequency ( const=ω ). The 
constancy of wavelength is not supposed here. 

Planck's correlation ωε h=  shows that the condition const=ω  entails the 
equality const=ε . Hence, Helmholtz equation can be applied to de Broglie waves 
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at the description of motion of corpuscles in potential fields when their full energy is 
constant: 

 constmp ppk =+=+= εεεε 22 , (6.1) 

where mpk 22=ε   is a kinetic energy, )()( rVrp
rr

≡ε  is potential energy of a 

corpuscle in a field. From de Broglie correlation kp
r

h
r
=     in view of (6.1) the 

equality follows:  
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2

2
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mk εε −=
h

, (6.2) 

Substituting the expression (6.2) for   in (5.3) we receive the equation: 2k
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εε ,   (6.3), 

named the Schroedinger stationary equation.       
From this follows, that the existing calculation methods of the energy, 

momentum, angular momentum and other characteristics of particle state in the 
quantum field theory are calculations of resonance states of elementary particles in 
the various types of resonators, which in the quantum theory are usually named the 
potential wells. From the mathematical point of view these problems refer to as 
eigenvalues problems. 

6.3. Quantization of state of the particle in the external field  
The first calculations of quantum systems concerned the electron motion in the 

hydrogen atom. The formulas of quantization of electron characteristics in this case 
have been firstly found empirically (formulas of Balmer, Paschen, etc.) . Then, it has 
been shown that they turn out as consequence of conditions of Bohr quantization. 

The generalization of Bohr quantization rules  has been made independently by 
Wilson and Sommerfeld. They have shown, that in case of systems with any number 
of degree of freedom  it is possible to find such generalized coordinates 

, in which the motion of system is separated on  harmonic 

oscillations; in this case a known rule of oscillator quantization can be applied for any 
of degrees of freedom. Owing to this generalization we receive  quantum 
conditions: 
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where the integers  refer to as quantum numbers. fnnn ,...,, 21
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As an example of the application of these rules it can be present the results of the 
hydrogen-like atom calculation (Shpolskii, 1951).  

As de Broglie has shown, the Bohr or Wilson-Sommerfeld rules of quantisation 
define the conditions of the electron wavelengths integrality on various closed 
trajectories. Obviously, since any field can be represented as the oscillators sum, it is 
necessary to consider this rule as true for any quantum systems. 

It is not difficult to see that within the framework of CWED these rules are 
natural rules of a resonance of the twirled electromagnetic waves, if we take into 
account a quantization rule of their energy according to Planck-de Broglie. 

The results, received according to Wilson-Sommerfeld quantization rules, have 
later appeared as solutions of the wave equation for standing de Broglie waves (i.e. of 
the Schroedinger equation) for various sorts of potential wells (Shpolskii, 1951). 

Thus, Schroedinger equation is the equation for calculation of resonance states 
of an electron wave in potential wells (resonators) of various type, boundary of wave 
motion in which are defined by potential energy of the system. Note, that the 
boundary states are expressed here by the same way, as in the classical theory of EM 
field: 

 0)(,0)(,0)( === dba ψψψ ,  (7.5) 

It is easy to show, that this problem is absolutely identical to the problem of 
stand EM wave in resonators (and also identical to the problem of oscillation of 
strings, membranes or elastic body). The distinction is that the wave vector is not 
constant here, but by some complex way depends on spatial coordinates; or, in other 
words, the dispersion relation is here defined by the  potential of system, which  
varies from a point to point according (6.2).  

From above follows the conditions of formation of elementary particles’ spectra. 

7.0. Formation of elementary particles’ spectra  
According to our supposition the own spectra of elementary particles in CWED 

must arise in the same manner as the resonance states in any wave theory. The 
originality in comparison with calculation of stationary states of a particle in a field 
of other particles (solution for Schroedinger or Dirac electron equations) consists in 
the fact that in this case we have not an external field (i.e. an external potential box), 
but the particles’ themselves are like such a box.  

It is not difficult to imagine that medium in the electromagnetic resonator can 
possess a dispersion, depending on spatial coordinates under the same law, as 
potential energy in a potential well of quantum-mechanical problem. Recollecting 
that within the framework of CWED the EM wave function is identical to wave 
function of quantum mechanics, it is easy to understand that boundary states in a 
quantum-mechanical problem (7.5) must coincide with the boundary states in CED 
and CWED. 
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